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Abstract 

The  high-performance,  scalability  and  miniaturization  requirements  together  with  the  power,  mass 
and  cost  constraints  mandate  the  use  of  commercial-off-the-shelf  (COTS)  components  and  standards in 
the X2000 avionics  system  architecture  for  deep-space  missions.  In  this  paper,  we  report  our  experi- 
ences  and  findings on the  design  of  an  IEEE  1394  compliant  fault-tolerant  COTS-based  bus  architecture. 
While  the COTS standard  IEEE  1394  adequately  supports  power  management,  high  performance and 
scalability,  its  topological  criteria  impose  restrictions on fault  tolerance  realization. To circumvent  the 
difficulties,  we  derive  a  “stack-tree’’  topology  that  not  only  complies  with  the  IEEE  1394  standard  but 
also  facilitates  fault  tolerance  realization in a  spaceborne  system  with  limited  dedicated  resource  re- 
dundancies.  Moreover,  by  exploiting  pertinent  standard  features of the  1394  interface  which  are  not 
purposely  designed  for  fault  tolerance,  we  devise  a  comprehensive  set  of  fault  detection  mechanisms  to 
support  the  fault-tolerant  bus  architecture. 
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1 Introduction 

Starting in FY 98, NASA's Office of Space  Science has initiated the Advanced Spacecraft Systems Devel- 
opment Program, also known as X2000, to develop advanced spacecraft technologies for future deep-space 
exploration missions. One of the focus technology development areas is advanced avionics technologies 
being developed at the newly established Center for Integrated Space Microsystems (CISM), a Center of 
Excellence at NASA's Jet Propulsion Laboratory [ 13. The main focus of CISM is the development of highly 
integrated, reliable, and highly capable micro-avionics systems for deep-space, long-term survivable, au- 
tonomous robotic missions. 

The X2000 Program is aimed at delivering a new generation of spacecraft systems every three years, to 
real flight projects (that is, to  the missions) [2]. Currently, there are at least five flight projects that have been 
identified as direct customers of the X2000 First Delivery technologies in the year 2000, namely, 

Europa  Orbiter will orbit  the moon of Jupiter that has recently been imaged by the Galileo spacecraft. The 
high radiation environment is a challenge, requiring special electronics design, and extensive radiation 
shielding. Reduction of mass is critical to the mission success. 

Pluto/Kuiper Express will be a mission to  image  the planet Pluto and go beyond to explore the Kuiper Belt. 
Long-term survivability, low-power, and autonomous operations are  the challenges. 

Solar Probe will perform science measurements heading directly to  the  Sun, within several solar radii. 
Operating through extreme temperature environments and radiation is the challenge. 

Champollion will rendezvous with a comet, land on its nucleus, and sample the comet, performing in-situ 
measurements. Advanced miniaturization is essential. 

Mars Sample Return is a mission engaged by NASA in a coordinated international multiyear robotic ex- 
ploration of Mars,  with  the goal of returning samples to Earth. Reduction in mass is essential, as well 
as on-board autonomous operations. 

The earliest launch of the above listed missions is  in 2003 (Europa and Kuiper Express). The target 
missions for  the Second Delivery are currently being considered. One should also note that most of the 
technologies being developed by X2000 are also applicable to Earth orbiting missions. Since the goal of 
the X2000 Program is to develop multi-mission spacecraft systems technologies for flight projects, the main 
challenge was to define a scalable, open architecture that can address different requirements (which are 
often conflicting) such as radiation, temperature, mission complexity, mass, power and volume constraints 
[3]. Among other things, the most severe constraint is  the overall cost of the missions. 

With the successful Mars Pathfinder landing on  Mars  on July 4th 1997, NASA has entered a new era of 
faster, better, cheaper space exploration (at $150 million, less than some Hollywood movie productions such 
as Titanic). Under stringent cost constraints, Pathfinder used many commercially available or Commercial 
Off The Shelf (COTS) technologies. However, while the Mars Pathfinder mission was designed for a 30-day 
primary mission success (it actually lasted several months), the deep-space missions targeted by the  X2000 
Program must survive up to 15 years (e.g., PlutoKuiper Express). 



In this paper, we report in detail our current work at CISM on the design of  a distributed, scalable, fault- 
tolerant multi-mission avionics architecture based on COTS technology (which is referred to as “X2000 
architecture” in  the remainder of the paper). The architecture is currently the baseline for the Europa Orbiter 
and Pluto/Kuiper Express projects, both scheduled for launch in  the year 2003 [4]. In the  X2000 architecture, 
the multiple computing nodes and devices are symmetric, which means that the roles of computing nodes 
are interchangeable while devices are treated as intelligent nodes in the network. Moreover, they share a 
common redundant bus architecture. Most notably, all interfaces used in this distributed architecture are 
based on COTS. Specifically, the local computer bus is the Peripheral Component Interface (PCI) bus  [5]; 
the “system bus” is the  IEEE  1394 high-speed bus [6, 71; and the engineering bus is the 12C  bus [8]. Using 
strictly COTS Intellectual Property (IP) for all component interfaces is a crucial step toward significant 
reduction of both system development cost and target cost of the developed system (recurring cost), as 
COTS interfaces enable other COTS products and IPS to be accommodated by the architecture [2]. The real 
challenge is to deliver a highly reliable and long-term survivable system based on such an architecture, where 
the  COTS IPS are not developed for mission-critical applications. The spirit of our solution is  to maximize 
the  use  of standard features of a COTS product in an innovative manner to circumvent its shortcomings, 
though  these standard features may  not be originally designed for highly reliable systems. 

In the following section, we provide more information about the baseline X2000 architecture, the con- 
cept of using COTS in the context of X2000 Program, and the features and disadvantages of IEEE  1394 
we exploit and circumvent, respectively, in implementing a fault-tolerant bus architecture. In Section 3, 
we elaborate the stack-tree topology which is IEEE  1394 compliant and exploits IEEE 1394’s port-disable 
feature for bus network reliability. In Section 4,  we describe our fault detection mechanisms that support 
the fault-tolerant bus architecture. Section 5 presents the methods and results of reliability evaluation for 
the stack-tree topology based bus network. In the concluding remark, we summarize what  we have accom- 
plished in this effort and discuss our findings. 

2 X2000 Baseline Architecture: A COTS-Based Approach 

The proposed baseline X2000  First Delivery avionics architecture is shown in Figure 1,  which covers all 
spacecraft avionics functions including: 1) on-board spacecraft commanding and operations, 2) power man- 
agement and distribution, 3) science  data storage and on-board science processing, 4) telemetry collection, 
management and downlink, 5) spacecraft navigation and control, 6) autonomous operations for on-board 
planning, scheduling, autonomous navigation fault-protection, isolation and recovery, etc., and 7) interfac- 
ing to numerous device drivers - both “dumb”and “intelligent” device drivers. 

The X2000 is a distributed, symmetric architecture with multiple computing nodes and real-time devices 
connected by a reliable and redundant set of buses. All of the buses that are being used are based on COTS 
IPS which have been competitively procured. This approach is driven and justified by the requirements of 
cost reduction for the total system and system development. The COTS buses provide a system level inter- 
face to both low-bandwidth (dumb) devices, as well as intelligent devices with embedded micro-controllers. 

Further, each computing node consists of 1) a high-performance processor module (high-performance 
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Figure 1: Baseline X2000  First Delivery Avionics Architecture 

for space applications implies a speed around 100 MIPS), 2) a 128 Mbytes of local (DRAM) memory, and 
3) a 128 Mbytes of on-board non-volatile storage for critical spacecraft information as well as science data. 
All of these modules communicate via an inter-module 33 MHz PC1 bus. The I/O module also provides for 
the redundant IEEE  1394a interface to other computer nodes and device drivers. The  same I/O module also 
provides the 12C interface which is a low-bandwidth engineering bus. 

All the computing nodes over the  1394 bus can be used in a symmetric fashion to control the on-board 
spacecraft functions. Moreover, the computer redundancy will be exploited for additional on-board capabil- 
ities such as fault-tolerant operations, dynamic fault-detection, on-board software verification for software 
upgrades. Many of the on-board functions in  the distributed architecture will be used at the discretion of the 
target missions based on available power constraints, mission specific requirements, etc. 

2.1 Concept of COTS in the  Context  of X2000 Architecture 

As the term “COTS” has a number of different interpretations, it is important to briefly elaborate what we 
do and what we do not mean by COTS in  the context of X2000 architecture. Some interpretations of COTS 
for space applications imply the direct use of commercial parts, components, or systems. This was certainly 
the  case in Mars Pathfinder where commercial DRAMS were used in the flight computer, and a commercial 
modem was used as part of the communication system with the Sojourner Rover. In  the  X2000 architecture, 
the term COTS  has a unique interpretation. In particular, since at least one of the target X2000 customers, 
namely, Europa, requires the tolerance of high-radiation environments, all the critical electronic components 
have  to be fabricated on specialized semiconductor foundries. Therefore, for the X2000 architecture, we 
have decided to “procure” COTS IPS for all inter-component interfaces, which in  turn, enables other COTS 
products and COTS IPS to  be incorporated into the  archtecture.  While  the  IPS  are COTS products, the actual 
fabrication of chips and other components are basically carried out by radiation hardened foundries. In that 
sense, the actual components are COTS IP based and specialized for space use, while the actual interfaces, 
protocols, etc. are all COTS standard compliant. With this approach, we will reap the benefits of COTS, 
namely, lower cost of system development, test and integration, as well as lower target recurring cost, while 
meeting the radiation requirements of our target missions. 
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2.2 Rationale  for  Selection  of  IEEE  1394  Bus  Architecture 

In the process of selecting the high-speed and low-power buses, many commercial interfaces have been 
examined. The candidates for the high-speed bus included the  IEEE 1394, Fiber Channel, Universal Serial 
Bus (USB), Fast Ethernet, Serial Fiber Optic Data Bus  (SFODB), ATM, Myrinet, FDDI, AS1773, and 
SPI. Many of these buses (e.g., USB, AS1773, and SPI) fail to  meet a projected requirement of 40 Mbps. 
Others have high power consumption which is unacceptable by  deep space applications (e.g., Fiber Channel, 
SFODB, ATM, and Myrinet). Some of them are not suitable  for real-time applications because of the 
indeterminacy of  bus latency. Another important consideration is that  the bus should have either radiation- 
hardened components or an ASIC core design that is  portable to a rad-hard foundry. A rigid evaluation 
based on  these factors results in the selection of the IEEE  1394 bus. 

Similar criteria were given to the low-power bus selection with special emphasis on low-power con- 
sumption and much less consideration for performance. The candidates included the  I2C, Controller Area 
Network (CAN), J1859, Low Power Serial Bus (LPSB, a 1553 Bus modified for low power), MicroLAN, 
and Access Bus. Our trade study shows that the 12C is the best compromise. 

The 1394 and 12C are not the ideal buses from the traditional fault tolerance point of  view. Although the 
1394 bus has  some fault detection features, its fault isolation capability is mediocre and it does not directly 
provide us with fault recovery mechanisms such as built-in redundancy and cross-strapping. Moreover, 
IEEE  1394 mandates a tree topology that is in general vulnerable to network partitioning. Nonetheless, our 
tradeoff study justifies the selection of these two buses because of their low cost and substantial commercial 
support. The selection of 1394 and 12C enables the  X2000  Program to procure COTS ASIC core designs, 
which can be integrated into a single chip. It  is estimated that this approach will reduce  the design effort 
by  30% when compared with  the Cassini ASIC design, while  the complexity of the ASIC is increased by 
400%. Moreover, COTS products required by IEEE  1394 and 12C implementation, such as bus monitors, 
prototype boards, and device drivers are readily available, which in turn, leads to further big savings. 

2.3 IEEE  1394:  Pertinent  Features and Restrictions for Fault  Tolerance 

The IEEE 1394 bus is intended to be used for commercial applications such as multimedia and portable 
phones. The current version of the  IEEE  1394 bus can support data rates of 100 Mbps, 200 Mbps, and 400 
Mbps for the cable implementution, and 50 Mbps and 100 Mbps for the backplane implementation. Higher 
data rates will be attainable in the forthcoming IEEE 1394b. We have selected the cable implementation due 
to its extensive commercial support. Accordingly, unless it is explicitly stated, all discussions in this paper 
refer to the cable implementation. 

Since the IEEE  1394 bus is designed for real-time multimedia applications, special attention has been 
paid to guarantee that data can be delivered in time.  Hence, the IEEE  1394 bus implements a technique 
called isochronous tmnsuction. All the nodes requiring on-time delivery are called isochronous nodes. 
Once every 125 p s  (an isochronous cycle), each isochronous node  has to arbitrate but is guaranteed a time 
slot (allocated bus bandwidth) to  send out its isochronous messages. At the beginning of each isochronous 
cycle, the  root sends out a cycle start message and then the isochronous transaction will follow. Within each 
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isochronous cycle, 80% of the  time  is available to the isochronous transactions. The protocol of the  IEEE 
1394 bus is shown in Figure 2. 

Subaction  (long)  Isochronous (short) Subaction  (long) 

Cycte Xm 
stali delay Ack (short) 

: v  
./ 

Cycle 
Nominal cycle 

Cycle Cycle 

Figure 2: IEEE 1394 Protocol 

While the isochronous cycles guarantee bandwidth and tightly bounded  bus latency, it does not assure 
reliable delivery since no acknowledgment is required. On the other hand, asynchronous transactions require 
acknowledgment and therefore can guarantee reliable delivery. However, the bandwidth of asynchronous 
transaction is not guaranteed because it is allotted only 20% of the isochronous cycle, while many nodes 
may be arbitrating for that time slot. To avoid starving nodes, the asynchronous transaction employs a fair 
arbitration scheme, so that every node can send message only  once in each fair arbitration cycle. A fair 
arbitration cycle  can span over many isochronous cycles, depending on how much of each cycle is used up 
by isochronous transactions and how many nodes are arbitrating for asynchronous transactions. The end of 
a fair arbitration cycle  is signified by an arbitration reset gap. As described in Section 4, in implementing 
a fault-tolerant bus architecture, we exploit the characteristics of the protocol such as gap timing for fault 
detection and isolation. 

As mentioned earlier, the  cable implementation of IEEE 1394 mandates a tree topology. Although there 
are various types of tree structure, for  space applications, it is preferred to have a “regular” topology (in the 
sense that the topological structure can be easily maintained as nodes are added or deleted from the system) 
because it can simplify the  test and integration processes for substantial cost saving. Therefore, the stack- 
tree topology depicted in  Figure 3 is proposed, where a node is either a flight computer or a device. There 
are three physical layer ports in  each node. For each stem node, two or more of these ports are connected to 
the other nodes, while a leaf node has only one port connected. Furthermore, each connection in Figure 3 is 
actually two twisted wire pairs, referred to as TPARPA* and TPB/TPB* (“*” symbolizes the complement 
signal). The TPA and TPB signals are designed for arbitration, data transmission, node insertion/removal 
detection, and indication of node  data rate. We take advantage of this standard feature in designing the 
detection mechanisms for certain bus failure modes, such as babbling nodes (described in Section 4). 

During bus startup or reset, the bus will go through an initialization process through which each  node 
will get a physical node ID. In addition, the root (cycle master), bus manager, and isochronous resource 
manager will be elected. The  root mainly is responsible for sending the cycle start message and acts as the 
central arbitrator for bus requests. The bus manager is responsible to acquire and maintain the bus topology. 
The isochronous resource manager is responsible for allocating bus bandwidth to isochronous nodes. The 
root, bus manager, and isochronous resource manger are not fixed, so that any qualified nodes can be elected 
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to  take  these roles when needed. Clearly, this dynamic initialization feature can  be utilized to support bus 
network reconfiguration. 

Once the bus initialization is complete, the bus will enter the normal operation. In either the isochronous 
or asynchronous mode, any node wishes to send data must arbitrate for  the bus. The arbitration is carried 
out by the two twisted wire pairs TPA and TPB. A useful feature worth to mention is that the signaling state 
(TPA, TPB) used in bus arbitration contains comprehensive information about the status of the nodes and 
the bus network, which can be used for fault monitoring. 

Note that  the stack-tree topology shown in Figure 3 has a potentially serious drawback. That  is, a tree 
topology by itself is not fault tolerant as any single link failure will partition the tree into two segments and 
any single  node failure can break the tree into three parts. What makes the design more difficult is that spare 
nodes dedicated for  fault tolerance are not  permitted in the X2000 architecture due  to  power  constraint. 
Although various schemes of fault-tolerant bus network have been proposed in research literatures (see 
[9, lo], for example), the restrictions from 1394 and from our application prevent us from utilizing those 
schemes since  the majority of them involve either loops or spare nodes. 

There are some fault detection provisions such as CRC in the  1394 standard, but they are inadequate to 
ensure  the reliability required for long-life missions such as Pluto/Kuiper Express (a 12 to 15 year mission). 
On the other hand, IEEE 1394a [ l l ]  provides an employable feature called “port-disable,” which allows us 
to implement a 1394 compliant reconfigurable bus architecture, though this feature is not purposely designed 
for fault tolerance. The spirit of our solution is to maximize the  use of pertinent standard features of  the 
COTS product in question to circumvent its shortcomings, though most of these standard features are not 
designed for reliability purpose. In the following sections, we describe the design of  a COTS-based fault- 
tolerant bus architecture in detail with respect to  bus network topology and fault detection methodologies. 

I Bus  1 Leaf 5 I I Bus 1 Leaf 6 I I Bus 1 Leaf 7 I I Bus  1 Leaf 8 I 

Figure  3:  Bus Network based on Stack-Tree Topology 

3 Stack-Tree Topology based Bus Architecture 

3.1 Concepts 

In the interest of bridging the terminology between network topology and the X2000 MCM-stack packaging 
technology [12], we call the proposed topology “stack-tree topology.” 

Definition 1 A stack  tree is a tree where each stem node is connected to ut most three other  nodes among 
which at  most two are stem nodes. 

For example, the trees in Figures 4(a), (c) and (d) are stack trees while that in Figure 4(b) is not. 
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Figure 4: Trees 

Definition 2 A complete stack  tree is  a stack tree where each stem node is connected to at least one leaf 
node. 

Figure  4(c) depicts a complete stack  tree  (CST) with n stem nodes. We call this topology simplex 
complete stack  tree which is denoted as CSTs . Note  that the nodes are labeled such that the stem nodes have 
ID numbers from 1 to n, while the leaf nodes have ID numbers from n + 1 to 2n. This labeling scheme will 
be used in the remainder of the paper. Further, we  use n, the number of stem nodes in a CST, to denote the 
size of the tree. Note also that the trees in Figures 4(c) and (d) are both CSTs. Based on the  CST in Figure 
4(c), we can define CST mirror-image as follows. 

Definition 3 The mirror-image of a complete stack tree is GI tree obtained by ( I )  removing the edges con- 
necting the  stem  nodes with ID numbers i and j which satisfj, the relation li - j l  = 1; (2)  adding edges to 
connect  the leaf nodes with ID numbers k and 1 which satisfy the relation I k - 1 I = 1. 

Clearly, the  CST shown in Figure  4(d)  is a mirror image of that in Figure 4(c). It is worth to note that a 
CST and its mirror image do not have any stem nodes in common. Moreover, based on the above definitions, 
it  can  be shown that the mirror-image of a CST is also a CST. 

3.2 Applications 

The performance of the X2000 spaceborne systems is scalable and gracefully degradable. Accordingly, our 
objective is to develop a fault-tolerant bus network architecture that will allow all the surviving nodes in 
the bus network to remain connected in the presence of node failures, without requiring spare nodes. The 
fact that a CST and its mirror image do not have stem nodes in common implies  that losing a stem node 
in one tree will not partition its mirror image. Accordingly, a dual bus scheme comprising a CST and its 
mirror image, referred to as CST dual scheme (denoted as CSTD), as shown in Figure  5(a), will be effective 
in tolerating single  or multiple node failures given that 1) the failed nodes are of the same  type (all stem 
or all lea0 with respect to one of the CSTs  (see  Figure 5(b)), or 2) the failed nodes involve both stem and 
leaf nodes but they form a cluster at either end (or both) of a CST, which will not affect the connectivity 
of the remainder of the  tree (see Figure 5(c)). We use terminal clustered stem-leaf failures to refer to the 
second failure pattern. Thus, for the cases which involve only the above failure patterns, all the surviving 
nodes will remain connected (no network partitioning). On the other hand, if a stem node and a leaf node in 
a CSTD based network fail in a form other than terminal clustered stem-leaf failure (see  Figure 5(d)), both 
the primary and mirror image will be partitioned. 
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Figure 5: CST-Based Dual Bus Network 

With the motivation of building a robust bus network architecture capable of tolerating more node fail- 
ures (in terms of number and type), we exploit a unique  feature of IEEE 1394, namely, the port-disable 
capability [l 13. This feature enables the physical connections between the physical layer of a node and the 
serial bus cable to become “invisible.” The implication is  the following: 

1) By using disabled ports, backup connections between nodes can be added without fonning loops 
(recall that loops are prohibited by IEEE 1394). By “backup connection,” we mean a serial bus cable 
that connects (via disabled ports) two nodes which are not expected to have a direct connection in the 
original network configuration (differing from duplicated connection); and 

2) Upon fault detection, by disabling physical ports, a failed node will be allowed to  be isolated from the 
rest of the bus network, and necessary backup link(s) can be activated (by enabling the corresponding 
ports) to repair the partitioned network such that messages can be routed in a reconfigured network, 
bypassing the failed node. 

Consider a bus network based on the CSTs topology with n stem nodes, each of which has one leaf 
node, as shown in  Figure  6(a). If we add a backup link between any two leaf nodes labeled i and j whch 
satisfy the relation [ ( i  mod n)  - ( j  mod n)I = 1, and also add a backup link to connect stem nodes 1 and 
n, then we get a topology as shown in  Figure 6(b) (an instantiation of the topology in which n = 6). 
Because the added connections (dashed edges) are of inactive nature, the bus network remains free of loop 
and thus complies with  the  1394 tree topology criterion. Figure 6(c) illustrates the bus network from a 
3-dimensional perspective, where the network topology resembles a ring. Accordingly, we denote this bus 
network configuration as CSTR. To aid the description of failure mechanisms of a CSTR based bus network, 
we introduce the following terminology: 

Definition 4 A fbiled  stem node i and  a failed leaf node j in a CSTR based network of size n will form a 
cut-type failure i f  1 ( j  mod n) - ( i  mod n)  I I 1. 

Figure 7 illustrates the concepts of cut-type and non cut-type failures. Specifically, the failures comprised 
by nodes 2 and 9 in Figure 7(a), nodes 5 and 1 1  in Figure 7(b), and nodes 1 and 12 in Figure 7(c) are cut-type 
failures. On the other hand, the node failures shown in Figures 7 (d) and (e) are not cut-type failures. 

Further, we  use  the  term clustered failure to refer to  the failure of a group of nodes which are adjacent to 
each other such that there exists a shortest path between any two failed nodes in  the group which does not go 
across a surviving node. Figures 8(a) and (b) illustrate the scenarios of clustered and non-clustered multiple 
cut-type failures, respectively. Clearly, while the latter failure pattern leads to a bus network partition, 
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Figure 7: Cut-Type and Non Cut-Type Failure 

the former does not even if node 6 also fails, although both scenarios involve multiple cut-type failures. 
Therefore, a bus network based on the CSTR topology  will be partitioned if and  only i f  there  exist multiple 
cut-typefailures which do not constitute a single cluster. Intuitively speaking, as illustrated by Figures 9(a) 
and (b), the first cut-type failure (single or clustered) will break the ring structure so that the remainder of the 
network becomes a CSTs based structure (with backup links); whereas the second cut-type failure (single 
or clustered) will break the CSTs based structure, resulting in network partitioning (see  Figure 9(c)). r/f """" --- .[..$ t.i"-;--i --.. f'f 

- - - - - - - - - - - - - - - 
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Figure 8: Clustered and Non-Clustered Multiple Cut-Type Failures 

Figure 10 depicts the simplified X2000 architecture in which the  CSTR based  bus network described 
above is implemented. In the figure, the solid and dashed thick lines marked "1394 Bus" represent the 
active and backup links, respectively. During normal operation, the active connections are driven by enabled 
ports while the ports of backup connections are disabled to avoid loops. The thin lines marked "I2C Buses" 
correspond to  the interface for fault detection, isolation and reconfiguration. The 12C bus is a very simple 
low-speed multi-drop bus and used only for protecting the  1394 bus. Hence this engineering bus has very 
low utilization and power consumption. For additional protection, a redundant bus (consisting of the  1394 
and 12C buses) which is a mirror image of the configuration shown in Figure 10 is proposed by our design. 
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Figure 9: CSTR Based Bus Network Partitioning 

For clarity of illustration, the connections of the redundant bus are not shown in the figure. 

Figure 10: CSTR-Based Fault-Tolerant Bus Network Architecture 

4 Devising Fault Detection Mechanisms based on 1394 Standard Features 

4.1 Design Principles 

Our fault detection, isolation and recovery algorithms for supporting the fault-tolerant bus architecture de- 
scribed in Section 3.2 are driven by the following failure modes which are crucial for space applications: l )  
invalid messages that contains invalid data detectable by error codes, 2) no response failure mode in which 
an expected response to a message does not return in time,  3) babbling failure mode in which uncontrolled 
data flooding causes normal communication in the bus network to  be blocked or interrupted, and 4) aliasing 
failure mode in which multiple nodes wrongly have the same ID. 

Based on the coordination between the 1394 and 12C buses (recall that the later is a low-cost engineering 
bus aimed at assisting fault detection, isolation and recovery in the X2000 architecture), a comprehensive 
set of fault tolerance strategy can be devised [ 131. Our design principle is  to first fully utilize the standard 
error detection primitives available in IEEE  1394, and then exploit its other pertinent features to devise addi- 
tional fault tolerance mechanisms to  compensate inadequacies. Among other fault tolerance methodologies 
developed for the bus architecture, we focus on fault detection mechanisms in this section. We first present 

the basic means for fault detection and then describe more specific detection strategies from failure mode 
perspective. Although the 12C  bus plays an important role in most of the algorithms, we omit the detailed 
description as it  is beyond the scope of this paper. 
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4.2 Basic  Means for Fault  Detection 

4.2.1 Fault  Detection  Provisions in IEEE 1394 

IEEE  1394 provides a number of standard fault detection primitives, including 1) data CRC and packet 
header CRC for both isochronous and asynchronous transactions, 2) error codes in acknowledgment packets 
to  indicate whether a message is successfully delivered, 3) parity bit to protect the acknowledgment packet 
itself, 4) error codes in response packets to indicate if the requested action has been completed successfully, 
and 5) built-in timeout conditions such as response timeout, arbitration timeout, acknowledgment timeout. 

When errors are detected by the target node during the asynchronous transaction, the target node returns 
the acknowledgment packet and response packet with error codes to  the requesting node. Based on  the error 
code,  the requesting node will carry out user defined fault recovery actions. The error codes specified for the 
acknowledgment packet correspond to 1)  resource contention causing bus request denial, and 2) data error 
and packet-type error detected by the data CRC and header CRC, respectively. The  error codes specified 
for  the response packet correspond to  1) resource contention, 2) data unavailability, 3) unsupported packet 
type, and 4) unaccessible address location. More detailed description of these  fault detection provisions can 
be found in [6,7, 111. 

4.2.2 Methods of Heartbeat and Polling 

We use heartbeat and polling mechanisms to augment the fault detection capability of IEEE 1394. In par- 
ticular, an isochronous cycle start message (see Section 2.3) sent by the  cycle master (root) of the  1394 bus 
every 125 p s  can be utilized as the heartbeat. By letting all the nodes participate monitoring the interval 
between cycle start messages, heartbeat will be effective for detecting various failures. For example, when 
the root node fails, other nodes will detect a missing cycle. Another example  is the babbling node failure 
mode. When a node babbles, the  cycle start message will be either corrupted or  lost, which causes missing 
heartbeat. Whereas if a fault causing multiple nodes to have the root ID, the heartbeat interval will become 
shorter and irregular because each “faked root” will send its cycle start message. 

The root node also sends polling messages periodically to individual nodes by using asynchronous trans- 
action. Since an asynchronous transaction requires acknowledgment from the target node, a node failure can 
be detected by acknowledgment timeout. To reduce  the polling latency, a unique feature specified by 1394a 
[l 11 for performance improvement of asynchronous transactions, called “fly-by concatenation,” can be ex- 
ploited. With fly-by concatenation, when an acknowledgment packet is en route from a node toward the 
root, any intermediate nodes can attach  its own packet to the original packet. Hence, when the root polls a 
leaf node, all the upstream stem nodes can attach their health status (HSPs) to the acknowledgment packet 
from the polled leaf node. Figure 11 illustrates this polling mechanism, where the  node IDS are based on the 
architecture shown in Figures 3 and 10. As a result, the root needs only to poll the leaf nodes, which reduces 
the polling cycle by half. A side benefit of this mechanism is that, the stem nodes, whose error conditions in 
general have greater impacts to the integrity of the bus, will be exercised more often and thus have shorter 
fault detection latencies. 
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Figure 11 : Fault Detection based on Fly-By Concatenation 

4.2.3 Watchdog  Timers 

The detection mechanisms described above are supported by a set of watchdog timrs,  among which the key 

timers are: 

CPU Watchdog  Timer : A hardware timer  to monitor the health of the local CPU. This timer is reset by 
the  CPU periodically. If it times out, a local reset will be triggered. 

Heartbeat  Interval  Monitor (HIM) : A hardware timer to monitor the heartbeat intervals. It is reset upon 
the arrival  of a cycle start message. 

Heartbeat  Lost  Timer (HLT) : A hardware timer triggered by the lost of heartbeat. It postpones the re- 
covery action by the local node in order to avoid the scenario in which multiple nodes simultaneously 
carry out recovery actions. 

Poll Response  Timer  (in  Root  Node) : A software timer to monitor the response time of polling messages 
on the  1394 bus. 

4.3 Detection  Mechanisms:  From  Failure  Mode  Perspective 

4.3.1  Invalid  Messages  Failure  Mode 

When a packet is transmitted across the serial bus, it may get corrupted, which results in  invalid data. As data 
corruption can be detected by CRC or parity bit, the message will be retransmitted. If retry is successful, 
the normal  bus transactions will resume. Otherwise the original requesting node  can employ the 12C  bus to 
isolate the fault and notify the root to initiate the reconfiguration process. 

4.3.2 No-Response Failure  Mode 

A number of no-response failures can be detected if they cause violation of the bus gap timings specified 
in the  1394 standard. For example, if a node fails to return or transmit an acknowledgment packet in an 

12 



asynchronous transaction, it can be detected by the acknowledgment gap timeout. On the  other hand, for 
the isochronous transactions which do not require acknowledgment packets, no-response failure will not 
be detected by gap timing violation. Therefore, if a no-response failure occurs in an isochronous node 
or its upstream nodes, the failure may go undetected. In that case,  the heartbeat and polling mechanisms 
described in Section 4.2.2 will effectively detect the failure. It  is worth to note that since a no-response 
failure can partition a tree topology based network by blocking the communication between the upstream 
and downstream nodes (relative to the no-response node), the 12C bus  will be deployed to bypass the failed 
node to carry out reconfiguration process. 

4.3.3 Babbling  Failure Mode 

Babbling failure mode  refers  the scenario in which a node keep sending data uncontrollably. A babbling 
node can  block  all communications in the network and thus results in a serious bus failure. The babbling 
failure  mode can be detected by the sequence of states on  the twisted wire pairs (TPA, TPB) (Section 2.3). 
When a babbling node is present, the normal sequence of arbitration, data prefix, data transfer, and data end 
will be corrupted. Another detectable form of babbling is a node hold~ng the (TPA, TPB)  at the state (1 ,  

I), which causes continuous bus resets. And as mentioned in Section 4.2.2, if the babbling node is the  root 
node, it can be detected through its corrupted or lost cycle start message (the later corresponds to missing 
heartbeat). 

4.3.4 Aliasing  Failure Mode 

As described in Section 2.3,  the physical ID of each node is assigned dynamically during the bus initial- 
ization process. When a node ID is corrupted due  to a permanent fault or a single event upset such that it 
coincides with the ID of another node in the network, an aliasing failure occurs. 

If the root node has the aliasing problem, it will be detected by the non-root nodes when they attempt to 
communicate with the  root  (e.g., for bus arbitration). In particular, upon the detection of the event in which 
a node sends  its  message to multiple roots, a bus reset will be triggered by the 1394 protocol. On the other 
hand, if the aliasing failure occurs in a node other than the root, it can  be detected by the polling mechanism 
described earlier. That is,  the root will receive response packets (HSPs) from  the two nodes which have  the 
same ID, in responding to the  same polling message. Upon the detection, the root can continue  its polling 
process and then identify the faulty node by checking the  node IDS marked in the topology map (which is 
generated during bus initialization). 

5 Bus Network Reliability Evaluation 

In accordance with the objective of the fault-tolerant bus architecture described in Section 3.2, we define 
bus network reliability is the probability that, through a mission duration t ,  the network remains in a state 
such that all the surviving nodes are connected (no network partitioning). Indeed the causes of a node failure 
encompass physical layer failure, link layer failure and CPU failure. Moreover, while redundant links (serial 
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bus cables) are permitted in the X2000 architecture, redundant nodes are not allowed due  to  the power and 
weight constraints. As a result, the likelihood of node failure is significantly greater than that of link failure. 
Therefore, in the reliability assessment that follows, we concern only node failure. Further, we  assume 
perfect coverage for fault detection and reconfiguration mechanisms in this evaluation. Before proceeding 
to derive solutions of reliability measures, we define the following notation: 

R,CST The reliability of a CSTs based  bus network. 

REsT The reliability of a CSTD based bus network. 

RgST The reliability of a CSTR based  bus network. 

X Poisson failure rate of a node. 

t Mission duration. 

9 Probability that a node fails during a mission. 

We begin with analyzing the  CSTs and CSTD based bus network schemes. As explained in Section 
3.2, terminal clustered stem-leaf failures in a CST will not affect the connectivity of the remainder of the 
tree. Thus we can retrieve a “remainder” from the original CST by eliminating the portion(s) comprised 
by terminal clustered stem-leaf failures. This observation leads us  to solve RgST and REsT as follows. We 
first condition the reliability of a “remainder” by its  size k (the number of its  stem nodes) which determines 
the number of possible positions of the remainder in the original CST, and then we uncondition it. More 
precisely, there are ( n  - k + 1) possible positions for a remainder of size k in a CST of size n. 

Since  the reliability of a remainder of size k for a CSTs based network is  the probability of all the stem 
nodes being failure-free, that is, (1 - q)’”,  we have 

n 
R,CST =  TI - k + 1)(1 - q)kqq2(n-k)  

k = l  

Since  the reliability of a size-lc remainder in a CSTD based network is  the complement of the probability 
that at least one stem node and at least one leaf node fail, namely, (1 - (1 - (1 - q)’)’) ,  the measure RgST 
can be expressed as 

n 
RgST = C(n - k + 1) (1 - (1 - (1 - q)’)’)  q2(n-k) 

k = l  

In both Equations (1) and (2), q = 1 - e-xt is the probability that a node fails during mission time t with 
failure rate X. 

The solution for RgsT is  more difficult because 1) the backup links enable the bus network to tolerate 
more node failure patterns, which makes the analysis of the conditions that cause network partitioning more 
complicated, and 2) the ring-like structure makes it difficult to  ensure that the failure patterns considered in 
the model are exhaustive and mutually exclusive. 

As explained in Section 3.2, a bus network architecture with a CSTR topology will be partitioned if and 
only if there exist multiple cut-type failures which do not constitute a single cluster. In other words, the 
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surviving nodes in a CSTR based bus network will remain connected if there exists at most  one cut-type 
failure cluster. In the model construction method described below, we view a single cut-type failure as a 
special case of cut-type failure cluster (where  the  size of the cluster is one) and treat a network that is  free of 
cut-type failure as a special case of remainder (where the sizes of the cluster and remainder equal to 0 and n,  
respectively). Specifically, we first condition network reliability by the  size of the first cut-type failure cluster 
(the number of stem nodes involved in  the cluster), then we evaluate the probability that the remainder, which 
is  the portion of the  CSTR based network structure excluding the first cluster, is free of cut-type failure. 
This probability is evaluated based on a set of recursive functions that enumerate the combinations and 
permutations of failed and surviving nodes in  the remainder where cut-type failure is absent. By successively 
expanding and reducing the sizes of the failure cluster and the remainder, respectively, we exhaustively 
enumerate the probabilities that a remainder is cut-type failure free. Accordingly, the measure we seek to 
evaluate can be expressed as 

n-1 
RZsT = ( i ) q 2 m F ( n  - r n )  + 2(n - 1)G(n) 

m=O 

where  the index rn represents the  size of a cluster, (:) is  the number of possible positions of the cluster in 
the CSTR based network, q2m is  the probability of such a cluster, and F ( n  - r n )  evaluates the probability 
that the remainder is cut-type failure free given that the  size of the failure cluster is rn. This probability is 
solved by a set of recursive functions which “walk through” the remainder backward, ensuring that 1) the 
distinct scenarios characterized by the number and positions of failed nodes are exhaustively enumerated, 
and 2) the remainder is cut-type failure free. More succinctly, 

where Fo ( k ) ,  F1 ( k )  and F2 ( k )  are the recursive functions that evaluate the probability of a cut-type failure 
free remainder of size k ,  in which 1) both k and k + n are surviving nodes, 2) k is a failed node and k + n 
is a surviving node, and 3) k is a surviving node and k + n is a failed node, respectively. The corresponding 
expressions are as follows: 

Fo(2) = [F& - 1) + Fl(2 - 1) + F2(2 - 1)] (1 - q)2  

FO(1) = (1 - d 2  
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To aid further explanation of the model, we introduce the term cut-type failure node pair, abbreviated 
as CFP, which refers to the failed node pair that forms a cut-type failure. Per Definition 4 in Section 3.2, a 
stem node k potentially could be involved in three differing CFPs, as shown in Figure  12. Further, we call 
the  CFPs { k ,  k + n - l}, { k ,  k + n }  and { k ,  k + n + 1) backward CFP, vertical CFP and forward CFP, 
respectively. 

k-1 k k + l  .. .. 

Figure 12: Cut-Type Failure  Node Pair 

It is worth to  note  that,  due to different patterns of the junctions between the cut-type failure cluster 
and the remainder, the first term of Equation (3) takes into account not only for the cut-type failure clusters 
that are constituted by vertical CFPs but also the cut-type failure clusters that can  be viewed as the clusters 
formed by forward and backward CFPs, as illustrated in Figures 13(a) and (b). 

For the special case where rn = 0, the  cut-type failure cluster becomes degenerate while the remainder 
spans the  entire  CSTR based  bus network. Although the combinatoric coefficient (G) equals to unity when 
rn = 0, different starting positions of the “remainder” in the  CSTR based bus network are still taken into 
account by the  set of recursive functions. That  is, Equations (5), (6) and (7) together enumerate the proba- 
bilities of all possible sequences of the status of node pairs { k ,  k + n}  such that there  is no cut-type failure 
formed within the remainder. As a result, different positions of a “remainder” in a CSTR structure (where 
m = 0) are “inherently” considered by F ( n ) .  For example, the “remainder” in Figure 14(b) can be viewed 
as a result of shifting the starting position of that in Figure  14(a) toward right by one node position - both 
cases (where rn = 0) are enumerated by F ( n ) .  

The only exception is  the scenario in which m = 0 and a single cut-type failure (a forward or backward 
CFP)  is formed at the “junction” where the two end of the remainder “merge,” as illustrated in  Figure 13(c) 
(recall that a single  CFP will not partition the network). Since  the recursive functions are formulated in a 
way such that  the cases where the remainder has an internal CFP are excluded, what missed in the first term 
of Equation (3) but compensated by its second term are the ( n  - 1) different positions of this particular CFP. 
The coefficient 2 for the second term is necessary because the  CFP could be of either a forward or backward 
type and the  two  types of CFP are “symmetric” with respect to structure and probability formulation. G(n)  
evaluates the probability that there exists a single (forward or backward) CFP in the  CSTR based network. 
The derivation of G( n )  is based on another set of recursive functions, which are formulated in a manner such 
that only the scenarios where the “merge” of the  ends of the remainder results in a forward or backward CFP 
are considered: 

Go(i) = [Go(i - 1) + G l ( i  - 1) + G2(i - I)] (1 - q ) 2  
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Figure 13: Failure Cluster and Remainder 

Figure 14: “Positions” of a Remainder of Size n 

Applying the models described above, reliability measures for the bus networks based on topologies 
CSTs  CSTD and CSTR  are evaluated with respect to  the  node failure rate X, size of a bus network n and 
mission duration t (in hours). Figure 15 depicts RgST, RgsT and RgST as functions of component node fail- 
ure rate X. In this evaluation, the  size of the CST-based bus networks n is set to 16 (a 32-node network) and 
mission duration t is set to 90,000 hours which implies an over 10-year long-life mission. It  can  be observed 
from the figure that, while  CSTD results in an appreciable amount of improvement from CSTs,  CSTR leads 
to significantly more reliability gain. The quantitative results show that RgST can reach 0.9999999762 if 
X = lo-’ and nearly perfect reliability can be achieved if X is lo-’ or lower. 

Figure 16 shows the results of the evaluation in which X is  set to and t is set to  90,000 hours, while 
n is kept as a variable parameter. It is interesting to note that REsT equals to RZsT when n = 2. This  is a 
reasonable result because for a 4-node network, the  node failure patterns that will partition a CSTD based 
network coincide with the failure patterns that will partition a CSTR based network. It can also be observed 
that the reliability improvement by RiST fiom REsST becomes more significant as the  size of the network 
increases. This is because more routing alternatives (comprised by active and backup links) are available in 
a larger CSTR based network. 
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Figure 15: Bus Network Reliability as a Function  of Node  Failure  Rate (n  = 16) 
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Figure  16: Bus Network Reliability as a Function of Network Size (X = 

Figure  17 illustrates the evaluation results of a study in  which X and n are set to and 16, re- 
spectively, while mission duration t is kept as a variable parameter. It is clear that both R$ST and R$" 
become unacceptable for long-life missions. On the other  hand, RgST remains  very reasonable even  when 
t = 100,000 (about 11.5 years). 
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6 Conclusion 

To implement fault tolerance in a COTS-based system is becoming a major challenge today when cost 
concern has led to increased use of COTS products for critical applications. On  the other hand, vendors 
remain reluctant to incorporate fault tolerance features into COTS products because doing so is likely to 
increase development and production costs and thus weaken the market competitiveness of their products. 
Therefore, to cope with the current state of COTS is crucial for us. Accordingly, the significance of our 
work reported in this paper is two folds: 

1) Our experience demonstrates that thorough evaluation and innovative utilization of pertinent standard 
features of' a state-of-the-practice COTS product could enable us to circumvent their shortcomings and 
facilitakeffective implementation of a COTS-based fault-tolerant system for critical applications, and 

2) Our design and the resulting system which is anticipated to to be delivered to deep-space missions 
in the near future may stimulate many other developments of COTS-based highly reliable systems, 
which in turn, could encourage  the vendors to incorporate fault tolerance features as implementation 
options of COTS products. These features will permit a COTS product, in a cost-effective manner, to 
satisfy the customers in both critical and non-critical application areas. 

How to provide fault tolerance for the 12C bus for protecting of the IEEE  1394 bus is beyond the scope 
of this paper. A number of such techniques have been developed at JPL CISM, which will be published in 
the near future. Currently, we are designing simulation methods to assess and validate the fault detection 
algorithms reported in this paper. Moreover, we are motivated to develop a paradigm that will provide 
guidelines for adopting COTS to space applications. 
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